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Let G  be a simple graph of order n . The domination polynomial of G  is the polynomial 
in

Gi
xiGdxGD ),(=),(

)(= 
, where 

),( iGd  is the number of dominating sets of G  of size i  and )(G  is the domination number of G . The number of 

dominating sets of a graph G  is ,1)(GD . In this paper we consider cactus chains with triangular and square blocks and 

study their domination polynomials. 
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1. Introduction 
 

Let ),(= EVG  be a simple graph. For any vertex 

)(GVv , the  open neighborhood of v  is the set 

)}(},{|)({=)( GEvuGVuvN   and the  closed 

neighborhood of v  is the set 
}{)(=][ vvNvN 

. For a set 

)(GVS  , the open neighborhood of S  is 

)(=)( vNSN
Sv 

 and the closed neighborhood of S  is 

SSNSN )(=][ . A set )(GVS   is a  dominating set if 

VSN =][  or equivalently, every vertex in SGV \)(  is 

adjacent to at least one vertex in S . The  domination 

number )(G  is the minimum cardinality of a dominating 

set in G . For a detailed treatment of these parameters, the 

reader is referred to [10]. Let ),( iGD  be the family of 

dominating sets of a graph G  with cardinality i  and let 

|),(=|),( iGDiGd . The  domination polynomial ),( xGD  

of G  is defined as iGV

Gi
xiGdxGD ),(=),(

|)(|

)(= 
, where 

)(G  is the domination number of G  (see [2, 5]). 

Obviously, the number of dominating sets of a graph G  is 

,1)(GD  (see [4, 13]). Recently the number of the 

dominating sets of graph G , i.e., ,1)(GD  has been 

considered and studied in [18] with a different approach. 

Domination theory have many applications in sciences 

and technology (see [10]). Recently the dominating set has 

found application in the assignment of structural domains 

in complex protein structures, which is an important task 

in bio-informatics ([8]). 

We recall that the Hosoya index )(GZ  of a molecule 

graph G , is the number of matching sets, and the 

Merrifield-Simmons index )(Gi  of graph G , is the 

number of independent sets. The Hosoya index of a graph 

has application to correlations with boiling points, 

entropies, calculated bond orders, as well as for coding of 

chemical structures. The Merrifield-Simmons index is one 

of the most popular topological indices in chemistry. For 

more information of these two indices see [1,15, 16, 19]. 

Note that )(GZ  and )(Gi  can be study by the value of 

matching polynomial and independence polynomial at 1 . 

In this paper we consider a class of simple linear 

polymers called cactus chains. Cactus graphs were first 

known as Husimi trees; they appeared in the scientific 

literature some sixty years ago in papers by Husimi and 

Riddell concerned with cluster integrals in the theory of 

condensation in statistical mechanics [9,11,17]. We refer 

the reader to papers [7, 14] for some aspects of domination 

in cactus graphs. 

A cactus graph is a connected graph in which no edge 

lies in more than one cycle. Consequently, each block of a 

cactus graph is either an edge or a cycle. If all blocks of a 

cactus G  are cycles of the same size i , the cactus is i -

uniform. A triangular cactus is a graph whose blocks are 

triangles, i.e., a 3 -uniform cactus. A vertex shared by two 

or more triangles is called a cut-vertex. If each triangle of 

a triangular cactus G  has at most two cut-vertices, and 

each cut-vertex is shared by exactly two triangles, we say 

that G  is a chain triangular cactus. By replacing triangles 

in this definitions by cycles of length 4  we obtain cacti 

whose every block is 4C . We call such cacti square cacti. 

Note that the internal squares may differ in the way they 

connect to their neighbors. If their cut-vertices are 

adjacent, we say that such a square is an ortho-square; if 

the cut-vertices are not adjacent, we call the square a para-

square. 

In Section 2 we study the domination polynomial of 

the chain triangular cactus with two approach. In Section 3 

we study the domination polynomials of chains of squares. 
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2. Domination polynomials of the chain  
    triangular cactus  
 

We call the number of triangles in G , the length of 

the chain. An example of a chain triangular cactus is 

shown in Fig. 1. Obviously, all chain triangular cacti of the 

same length are isomorphic. Hence, we denote the chain 

triangular cactus of length n  by nT . In this paper we 

investigate the domination polynomial of nT  by two 

different approach. 

 

 
 

Fig. 1. The chain triangular cactus. 

  

 
2.1  Computation of ),( xTD n  using recurrence  

       relation 
 

In the first subsection, we use results and recurrence 

relations of the domination polynomial of a graph to find a 

recurrence relation for ),( xTD n . 

We need the following theorem:   

 

Theorem 1.  [5]  If a graph G  consists of k  

components kGG ,,1  , then ).,(=),(
1=

xGDxGD i

k

i    

 

The vertex contraction uG/  of a graph G  by a vertex 

u  is the operation under which all vertices in )(uN  are 

joined to each other and then u  is deleted (see[20]). 

The following theorem is useful for finding the 

recurrence relations for the domination polynomials of 

arbitrary graphs. 

  

Theorem 2.  [3,12] Let G  be a graph. For any vertex 

u  in G  we have  

 

),,()(1

)],[(),(),/(=),(

xGpx

xuNGxDxuGDxuGxDxGD

u


 

where ),( xGpu  is the polynomial counting the 

dominating sets of uG   which do not contain any vertex 

of )(uN  in G .   

Domination polynomial satisfies a recurrence relation 

for arbitrary graphs which is based on the edge and vertex 

elimination operations. The recurrence uses composite 

operations, e.g. ueG / , which stands for ueG )/(  . 

  
Theorem 3 .  [12] Let G  be a graph. For every edge 

Evue },{= ,  

 

),/(),/([
1

),(=),( xveGDxueGD
x

x
xeGDxGD 


  

 

)],[()],[(),/(),/( xvNGDxuNGDxvGDxuGD   )].],[()],[( xvNeGDxuNeGD   

   

 

 We use for graphs ),(= EVG  the following vertex 

operation, which is commonly found in the literature. Let 

Vv  be a vertex of G . A vertex appending eG   (or 

},{  vG ) denotes the graph ( },{},{ vvEvV  ) 

obtained from G  by adding a new vertex v  and an edge 

},{ vv   to G . 

The following theorem gives recurrence relation for 

the domination polynomial of nT . 

  

Theorem 4 .  For every 3n ,  

),,()(),()2(=),( 2

2

1

2 xTDxxxTDxxxTD nnn    

with initial condition xxxxTD 33=),( 23

1   and 

xxxxxxTD  2345

2 8105=),( .   

 
Proof. Consider the graph nT  as shown in the 

following Fig. 1. Since uTn /  is isomorphic to uTn   and 

0=),( xTp nu , by Theorem 2 we have:  

 

 

),()(1

)],[(),(),/(=),(

xTpx

xuNTxDxuTDxuTxDxTD

nu

nnnn




 )],[(),/(1)(= xuNTxDxuTDx nn   

).,(),(1)(= 21 xeTxDxeTDx nn    (1) 

   

 
Fig. 2. The Graph .1 eTn   

  

 
Note we use Theorems  1 and 2 to obtain the 

domination polynomial of the graph eTn 1  (see Fig. 2). 

Suppose that v  be a vertex of degree 1  in graph eTn 1  

and let u  be its neighbor. Note that in this case 

0=),( 1 xeTp nu  . We deduce that for each Nn , 

)],(),(),([

=),(

321

1

xeTDxeTDxTDx

xeTD

nnn

n








. Therefore 

by equation (1) and this equality we have  

).,()2(

)),(),()((=),(

2

2

31

2

xeTDxx

xeTDxTDxxxTD

n

nnn








 

  Now it's suffices to prove the following equality:  

).,()(),(

=),()2(),()(

2

2

1

2

2

3

2

xTDxxxTxD

xeTDxxxeTDxx

nn

nn








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For this purpose we use Theorem 2 for ),( 1 xTD n . We 

have  

).,(),()(=),( 3

2

2

2

1 xeTDxxeTDxxxTxD nnn    

Now we use Theorem 2 for v  to obtain domination 

polynomial of eTn 2 , then we have 

).,()(1

),(),()(1=),(

3

322

xeTDx

xeTxDxTDxxeTD

n

nnn








 

Therefore the result follows.  

  

 

2.2  Computation of ),( xTD n  by counting the  

       number of dominating sets 
    

In this section we shall obtain a recurrence relation for 

the domination polynomial of nT . For this purpose we 

count the number of dominating sets of nT  with 

cardinality k . In other words, we first find a two variables 

recursive formula for ),( kTd n . 

Recently by private communication, we found that the 

following result also appear in [6] but were proved 

independently. 

  

Theorem 5 .  The number of dominating sets of nT  

with cardinality k  is given by  

2).,(

1),(2),(1),(2=),(

2

211









kTd

kTdkTdkTdkTd

n

nnnn
 

  

 Proof. We shall make a dominating set of nT  with 

cardinality k  which we denote it by k

nT . We consider all 

cases: 

Case 1. If k

nT  contains both of v  and w , then we 

have },{= 2

1 wvk

n

k

n 

TT . In this case we have 

2),(=),( 1  kTdkTd nn . 

Case 2. If k

nT  contains only v  or w  (say v ), then we 

have }{= 1

1 vk

n

k

n 

TT . In this case we have 

1),(2=),( 1  kTdkTd nn . 

 Case 3. If k

nT  contains none of v  and w , then we 

can construct k

nT  by 1

2





k

nT  or 2

2





k

nT  as shown in Fig. 3. In 

this case we have 2),(1),(=),( 22   kTdkTdkTd nnn . 

By adding all contributions we obtain the recurrence for 

),( kTd n .  

 
 

Fig. 3.  Recurrence relation for ),( kTd n . 

  

  
Corollary 1 .  For every 3n ,  

).,()(),()2(=),( 2

2

1

2 xTDxxxTDxxxTD nnn    

  

Proof. It follows from Theorem 5 and the definition 

of the domination polynomial.  

  

 We mention here the Hosoya index of a graph G  is 

the total number of matchings of G  and the Merrifield-

Simmons index is the total number of its independent sets. 

Motivation by these indices, we are interested to count the 

total number of dominating set of a graph which is equal 

to ,1)(GD . Here we present a recurrence relation to the 

total number of the chain triangular cactus. 

  

Theorem 6 . The enumerating sequence }{ nt  for the 

number of dominating sets in nT  2)( n  is 

21 23=   nnn ttt  

with initial values 2=0t , 7=1t .   

 

Proof. Since ,1)(= nn TDt , it follows from Corollary 

1.  

 

 

3. Counting the number of dominating sets of  
    chains of squares 
 

  By replacing triangles in the definitions of triangular 

cactus, by cycles of length 4  we obtain cacti whose every 

block is 4C . We call such cacti, square cacti. An example 

of a square cactus chain is shown in Fig. 4. We see that the 

internal squares may differ in the way they connect to their 

neighbors. If their cut-vertices are adjacent, we say that 

such a square is an ortho-square; if the cut-vertices are not 

adjacent, we call the square a para-square. 
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3.1 Domination polynomial of para-chain square  

      cactus graphs 
 

In this subsection we consider a para-chain of length 

n , nQ , as shown in Fig. 4. We shall obtain a recurrence 

relation for the domination polynomial of nQ . As usual we 

denote the number of dominating sets of nQ  by ),( kQd n . 

The following theorem gives a recurrence relation for 

),( xQD n . 

 

 
Fig. 4. Para-chain square cactus graphs. 

  

 
We need the following Lemma for finding domination 

polynomial of the nQ . 

 

 
 

Fig. 5. Graphs 


nQ ,  nQ   and  (2)nQ , respectively. 

 

  

 
 

Fig. 6. Graphs  weQn )/(   and  eQn  , respectively. 

  
Lemma 1 .    For graphs in figures 5 and 6 have: 

  

),'(),()(1=),( )( 1 xQxDxeQDxxQDi nnn 

  , where 

xxxxQD 33=),( 23

0  . 

  

)),'(),(),((=)(2),( )( 1 xQDxQDxeQDxxQDii nnnn 

, where xxxxQD  23

0 3=)(2),( . 

  

),'(),()(1=),( )( 1 xQxDxeQDxxQDiii nnn   , where 

xxxxQD 
23

0 3=),( . 

  
),'(2),'(

)),(),((=),( )(

2

2

1

1

xQDxxQxD

xQDxQDxxeQDiv

nn

nnn








 

where 2345

1 495=),( xxxxxeQD  .   

Proof. The proof of parts )(i  and )(ii  follow from 

Theorems 1 and  2 for vertex u  in graphs 

nQ  and (2)nQ , 

respectively. Note that in these cases 0=),( xGpu . 

)(iii  We use Theorems 1 and  2 for vertex u  to 

obtain domination polynomial of nQ  , then we have  

),'()(1

),'(),()(1=),(

1

1

2

xQxDx

xQDxxeQDxxQD

n

nnn








 

).,'(),()(1= 1

2 xQDxxeQDx nn   

 

)(iv  We use Theorems 1 and  2 for vertex w  to obtain 

domination polynomial of eQn  , as shown in Fig. 6 then 

we have 
).,(),'(),)/((

=),(

11 xQxDxQxDxweQxD

xeQD

nnn

n

 


 

Now consider the graph weQn )/(   as shown in Fig. 6. 

We use Theorems 1 and  3 for },{= vue  to obtain 

),)/(( xweQD n  , then we have  

 

),(),(),([
1

),(=),)/((

111 xQxQDxQD
x

x

xQDxweQD

nnn

nn











 




 

)],'(),'(

),'(),'(),(

22

221

xQxDxQxD

xQDxQDxQD

nn

nnn












 

).,'(2),(= 2 xQxDxQD nn   

 

Therefore the result follows.  

  

Theorem 7.  The domination polynomial of para-

chain nQ  is given by  

 

),()2(),()2(

=),(

2

23

1

23 xQDxxxQDxxx

xQD

nn

n

 
 

),,'()4(2),'()3( 3

34

2

23 xQDxxxQDxx nn    

 

with initial conditions 234

1 64=),( xxxxQD   and 

34567

2 1529217=),( xxxxxxQD  .   

Proof. Consider the labeled nQ  as shown in Figure 4. 

We use Theorems 1 and  2 for vertex nu  to obtain the 

domination polynomial of nQ . We have  

 

),'()(1

),'()(2),(),(=),(

2

2

2

11

xQxDx

xQDxxQDxQxDxQD

n

nnnn













).,'()(2),(),(= 211 xQxDxQDxQxD nnn 



    (2) 

 

Therefore by parts )(),( iii  and )(iv  of Lemma 1 and 

equation (2) we have  

 

),((

)),'(),()((1=),(

1

21

xeQDx

xQxDxeQDxxxQD

n

nnn








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),'()),'(),( 221 xQxDxQDxQD nnn    

),(),'(),()2(= 12

2

1

2 xQxDxQDxxeQDxx nnn  

),'()),(),(()[2(= 221

2 xQxDxQDxQDxxx nnn    

),(),'()],'(2 12

2

3

2 xQxDxQDxxQDx nnn    

),()2(),()2(= 2

23

1

23 xQDxxxQDxxx nn    

).,'()4(2),'()3( 3

34

2

23 xQDxxxQDxx nn    

 

 
3.2 Domination polynomial of ortho-chain square  

      cactus graphs 
 

  In this subsection we consider a ortho-chain of 

length n , nO , as shown in Fig. 7. We shall obtain a 

recurrence relation for the domination polynomial of nO . 

 

 
Fig. 7. Labeled ortho-chain square nO . 

 

  
 We need the following Lemma for finding 

domination polynomial of the nO . 

 

 
Fig. 8. Graphs 



nO ,  (2)nO ,  nO   and  eOn  , respectively. 

  

  
Lemma 2 .    For graphs in figure 8 we have: 

  

)(2),(),()(1=),( )( 1 xOxDxeODxxODi nnn 

  , where 

xxxxOD 33=),( 23

0  . 

  

))(2),(),(),((=)(2),( )( 1 xODxODxeODxxODii nnnn 

where xxxxOD  23

0 3=)(2),( . 

  

)(2),(),()(1=),( )( 1 xOxDxODxxODiii nnn 


  , where 

xxxxxOD 264=),( 234

0  . 

  

)(2),(

)(2),(),(=),( )(

2

2

1

xODx

xOxDxOxDxeODiv

n

nnn



 
  where 

2345

1 495=),( xxxxxeOD  .   

 
Proof. The proof of parts )( ),( iii  and )(iv  follow 

from Theorems 1 and  2 for vertex u  in graphs (2) , nn OO  

and eOn  , respectively. Note that in these cases 

0=),( xGpu . 

 )(iii  We use Theorems 1 and  2 for u  in graphs nO  . 

Since uOn /  is isomorphic to uOn   and 

)(2),(=),( 1 xOxDxGp nu  . So we have the result. 

  

Theorem 8 .  The domination polynomial of para-

chain nO  is given by 

),(2),(

),()2(),(=),(

2

2

1

2

1

xODx

xeODxxxOxDxOD

n

nnn



 
 

with initial condition .64=),( 234

1 xxxxOD     

Proof. Consider the labeled nO  as shown in Figure 7. 

We use Theorems 1 and  2 for vertex nu  to obtain 

domination polynomial of nO , then we have  

 

)(2),()(1)(2),(

)(2),(),(=),(

22

2

11

xOxDxxODx

xODxOxDxOD

nn

nnn












 

).(2),()(2),(),(= 211 xOxDxODxOxD nnn 



   

Therefore by parts )(i  and )(ii  of Lemma 2 and this 

equation we have  

 

),((

))(2),(),()((1=),(

1

21

xeODx

xOxDxeODxxxOD

n

nnn









)(2),())(2),(),( 221 xOxDxODxOD nnn    

).,(

)(2),(),()2(=

1

2

2

1

2

xOxD

xODxxeODxx

n

nn



 
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